今晚我们生信技能树的学习大使《二货潜》神神秘秘的甩给我一个GitHub资源链接,里面有一份非常好的数据分析学习资料:加拿大生物信息学研讨会,而且笃定我们生信技能树以前没有分享过。确实我在生信技能树写了1.3万篇教程,还真记不清楚我以前有没有分享过。但是最近我们就分享过两个类似的资源:
学习资源真心是比想学习的人还多,不信你就看下去!
文末友情宣传
强烈建议你推荐给身边的博士后以及年轻生物学PI,多一点数据认知,让他们的科研上一个台阶:
- 全国巡讲全球听(买一得五),第二期 ,你的生物信息学入门课
- 生信技能树的2019年终总结 ,你的生物信息学成长宝藏
- 2020学习主旋律,B站74小时免费教学视频为你领路
加拿大生物信息学研讨会资源宝藏
- 官方主页链接:
https://bioinformatics.ca/workshops/2018-epigenomic-data-analysis/ - github 链接:
https://github.com/bioinformatics-ca - twitter 主页:
https://twitter.com/bioinfodotca - 各种主页:
https://bioinformaticsdotca.github.io/ - youtube 链接:
https://www.youtube.com/channel/UCKbkfKk65PZyRCzUwXOJung
最重要:有视频、有讲义 PDF以及PPT 、有实战,并且都是讲的特别详细。
放在最前面的话,我觉得讲义看 2019
的就行了。如果加上视频比较好理解,那就看 2018
。
容我打开 2019 资料网站:https://bioinformaticsdotca.github.io/
点进去界面是这样的:
再往下滑动:
好了,我们可以清楚的看到分为几大块。
2019
High-throughput Biology: From Sequence to Networks
这部分主要讲从序列到最终的调控网络,也包括了一些基础的 UNIX/R 的学习。(这部分 PDF 421 页)
准备工作:
1) R Preparation tutorials:
2) UNIX Preparation tutorials:
3) Sequencing Terminology
4) Cytoscape Preparation tutorials: Complete the introductory tutorial to Cytoscape
培训前需要查看的文献
- Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
- Genome structural variation discovery and genotyping
- A survey of sequence alignment algorithms for next-generation sequencing
- Genotype and SNP calling from next-generation sequencing data
- Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud
- Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown
- ENCODE RNA-Seq Standards
- Methods to study splicing from high-throughput RNA sequencing data
- A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
接下来就是一周的课程安排
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
- Module 7: Introduction to RNA Sequencing Analysis
- Module 8: RNA-seq Alignment and Visualization
- Paper: Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing
- Module 9: Expression and Differential Expression
- Module 10: Reference Free Alignment
- Module 11: Isoform Discovery and Alternative Expression
- Module 12: Introduction to Pathway and Network Analysis
- Module 13: Finding Over-Represented Pathways
- Module 14: Network Visualization and Analysis with Cytoscape and Reactome
- Module 15: More Depth on Network and Pathway Analysis and Cytoscape Enrichment map
- Module 16: Gene Function Prediction
- Module 17: Regulatory Network Analysis
Introduction to R
两天
Exploratory Analysis of Biological Data Using R
两天
Bioinformatics for Cancer Genomics
这部分PDF 316 + 49 + 52 页
这部分学癌症相关的应该是大有用处 - Module 1: Introduction to Cancer Genomics
- Module 2: Ethics of Data Usage and Security
- Module 3: Databases and Visualization Tools
- Module 4: Genome Alignment
- Module 5: Genome Assembly-
- Module 6: Copy Number Variants
- Module 7: Somatic Mutations and Annotations
- Module 8: Gene Expression Profiling
- Module 9: Gene Fusion and Rearrangements
- Module 10: Genes to Pathways
- Module 11: Variants to Networks
- Module 12: Integration of Clinical Data
Informatics for RNA-Seq Analysis
这部分就是我们最基础的 RNA-seq 分析所需要做的内容 这部分PDF 131 页
- Module 1: Introduction to Cloud Computing
- Module 2: Introduction to RNA Sequencing Analysis
- Module 3: RNA-seq Alignment and Visualization
- Module 4: Expression and Differential Expression
- Module 5: Reference Free Alignment
- Module 6: Isoform Discovery and Alternative Expression
- Module 7: Genome Guided and Genome-Free Transcriptome Assembly
- Module 8: Functional Annotation and Analysis of Transcripts
Informatics on High-Throughput Sequencing Data
这部分PDF 182 页
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
Pathway and Network Analysis of -omics Data
这部分对于做调控网络的应该是大有帮助 这部分PDF 186 页
- Module 1: Introduction to Pathway and Network Analysis
- Module 2 Finding Over-Represented Pathways
- Module 3: Network Visualization and Analysis with Cytoscape
- Module 4: More Depth on Network and Pathway Analysis
- Module 5: Gene Function Prediction
- Module 6: Regulatory Network Analysis
Using Clouds for Big Cancer Data Analysis
上面就是 2019 年培训资料相关的。
当然这只是一部分。
文末友情宣传
强烈建议你推荐给身边的博士后以及年轻生物学PI,多一点数据认知,让他们的科研上一个台阶:
- 全国巡讲全球听(买一得五),第二期 ,你的生物信息学入门课
- 生信技能树的2019年终总结 ,你的生物信息学成长宝藏
- 2020学习主旋律,B站74小时免费教学视频为你领路
2018
Informatics on High-Throughput Sequencing Data 2018
课程链接:https://bioinformaticsdotca.github.io/high-throughput_biology_2017
Day 1
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
Day 2
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
Infectious Disease Genomic Epidemiology 2018
课程链接:https://bioinformaticsdotca.github.io/epidemiology_2018
Day 1
- Module 1: Introduction to Public Health Microbiology and Genomic Epidemiology
- Module 2: Pathogen Genomic Analysis I
- Module 3: Pathogen Genomic Analysis II
Day 2
- Module 4: Antimicrobial Resistance Genes
- Module 5: Phylogeographic Analysis
Day 3
- Module 6: Emerging Pathogen Detection and Identification Using Metagenomics Samples
- Module 7: Data Visualization
Informatics and Statistics for Metabolomics 2018
课程链接:https://bioinformaticsdotca.github.io/metabolomics_2018
Day 1
- Module 1: Introduction to Metabolomics
- Module 2: Metabolite Identification and Annotation
- Module 3: Databases for Chemical, Spectral, and Biological Data
Day 2
- Module 4: Backgrounder in Statistics
- Module 5: MetaboAnalyst
- Module 6: Future of Metabolomics
Pathway and Network Analysis of -Omics Data 2018
课程链接:https://bioinformaticsdotca.github.io/pathways_2018
Day 1
- Module 1: Introduction to Pathway and Network Analysis
- Module 2: Finding Over-Represented Pathways
- Module 3: Network Visualization and Analysis with Cytoscape
Day 2
- Module 4: More Depth on Pathway and Network Analysis
- Module 5: Gene Function Prediction
Day 3
- Module 6: Regulatory Network Analysis
Introduction to R 2018
课程链接:https://bioinformaticsdotca.github.io/intror_2018
Exploratory Analysis of Biological Data Using R 2018
- Recording Session 1
- Recording Session 2
- Recording Session 3
- Recording Session 4
- Recording Session 5
- Recording Session 6
- Recording Session 7
- Recording Session 8
Bioinformatics for Cancer Genomics 2018
课程链接:https://bioinformaticsdotca.github.io//bicg_2017
Day 1
- Module 1: Introduction to cancer genomics
- Module 2: Databases and Visualization Tools
- Module 3a: Cancer Databases
- Module 3b: Visualization Tools
Day 2
- Module 4: Genome Alignment
- Module 5: Genome Assembly
- Module 6: Copy Number Variants
Day 3
- Module 7: Somatic Mutations and Annotations
- Module 8: Gene Expression
Day 4
- Module 9: Gene Fusion and Rearrangements
- Module 10: Sharing and Scaling a VM
Day 5
- Module 11: Working Reproducibly in the Cloud
- Module 12: Big Data Analytics in the Cloud
- Module 13: Genes to Pathways
Day 6
- Module 14: Variants to Networks
- Module 15: Clinical Data Integration
Informatics for RNA-Seq Analysis 2018
课程链接:https://bioinformaticsdotca.github.io/rnaseq_2018
Day 1
- Module 1: Introduction to RNA Sequencing and Analysis
- Module 2: RNA-seq alignment and visualization
Day 2
- Module 3: Expression and Differential Expression
- Module 4: Reference Free Alignment
Day 3
- Module 5: Genome-Free De Novo Transcriptome Assembly
- Module 6: Functional Annotation and Analysis of Transcripts
Informatics on High-Throughput Sequencing Data 2018
课程链接:https://bioinformaticsdotca.github.io/htseq_2018
Day 1
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
Day 2
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
Epigenomic Data Analysis 2018
课程链接:https://bioinformaticsdotca.github.io/epigenomics_2018
Day 1
- Module 1: Introduction to ChIP Sequencing and Analysis
- Module 2: ChIP-Seq Alignment, Peak Calling, and Visualization
Day 2
- Module 3: Introduction to WGBS and Analysis
- Module 4: Downstream Analyses and Integrative Tools
Analysis of Metagenomic Data 2018
课程链接:https://bioinformaticsdotca.github.io/metagenomics_2018
Day 1
- Module 1: Introduction to Metagenomics
- Module 2: Marker Gene-Based Analysis
- Module 3: PICRUSt
Day 2
- Module 4: Metagenomic Taxanomic and Functional Composition
- Module 5: Pulling Genomes from Metagenomes
Day 3
- Module 6: Metatranscriptomics
- Module 7: Statistical Tests for Metagenomics
- Module 8: Biomarkers and Bringing It All Together
文末友情宣传
强烈建议你推荐给身边的博士后以及年轻生物学PI,多一点数据认知,让他们的科研上一个台阶:
- 全国巡讲全球听(买一得五),第二期 ,你的生物信息学入门课
- 生信技能树的2019年终总结 ,你的生物信息学成长宝藏
- 2020学习主旋律,B站74小时免费教学视频为你领路
2017
High-Throughput Biology - From Sequence to Networks 2017
课程链接:https://bioinformaticsdotca.github.io/high-throughput_biology_2017
Day 1
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
Day 2
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
Day 3
- Module 7: Introduction to RNA Sequencing Analysis
- Module 8: RNA-seq Alignment and Visualization
Day 4
- Module 9: Expression and Differential Expression
- Module 10: Reference Free Alignment
- Module 11: Isoform Discovery and Alternative Expression
Day 5
- Module 12: Introduction to Pathway and Network Analysis
- Module 13: Finding Over-Represented Pathways
- Module 14: Network Visualization and Analysis with Cytoscape
Day 6
- Module 15: More Depth on Network and Pathway Analysis
- Module 16: Gene Function Prediction
Day 6
- Module 17: Regulatory Network Analysis
Infectious Disease Genomic Epidemiology 2017
课程链接:https://bioinformaticsdotca.github.io/genomic_epidemiology_2017
Day 1
- Module 1: Introduction to Public Health Microbiology and Genomic Epidemiology
- Module 2: Pathogen Genomic Analysis I
- Module 3: Pathogen Genomic Analysis II
Day 2
- Module 4: Antimicrobial Resistance Genes
- Module 5: Phylogeographic Analysis
Day 3
- Module 6: Emerging Pathogen Detection and Identification Using Metagenomics Samples
- Module 7: Data Visualization
Bioinformatics of Genomic Medicine 2017
课程链接:https://bioinformaticsdotca.github.io/genomic_medicine_2017
Day 1
- Module 1: Introduction and Patient Phenotyping and Genetic Disease
- Module 2: Introduction to Tools, Computing Infrastructure, and Data
- Module 3: Variant Annotation
- Module 4: Translating Research Workflows into Clinical Tests
Day 2
- Module 5: Available Epigenetics Data and Resources
- Module 6: Epigenetic Profiling in Disease
- Module 7: Patient Similarity Fusion
Pathway and Network Analysis of -Omics Data 2017
课程链接:https://bioinformaticsdotca.github.io/pathways_2017
Day 1
- Module 1: Introduction to Pathway and Network Analysis
- Module 2: Finding Over-Represented Pathways in Gene Lists
- Module 3: Network Visualization and Analysis with Cytoscape
Day 2
- Module 4: More Depth on Pathway and Network Analysis
- Module 5: Gene Function Prediction
Day 3
- Module 6: Regulatory Network Analysis
Introduction to R 2017
课程链接:https://bioinformaticsdotca.github.io/IntroR_2017
Exploratory Analysis of Biological Data Using R 2017
课程链接:https://bioinformaticsdotca.github.io/EDA_2017
Day 1
- Module 1: Exploratory Data Analysis
- Module 2: Regression
- Module 3: Dimension Reduction
Day 2
- Module 4: Clustering
- Module 5: Hypothesis Testing
Bioinformatics for Cancer Genomics 2017
课程链接:https://bioinformaticsdotca.github.io//bicg_2017
Day 1
- Module 1: Introduction to cancer genomics
- Module 2: Databases and Visualization Tools
Day 2
- Module 3a: Genome Alignment
- Module 3b: Genome Assembly
- Module 4: Copy Number Variants
Day 3
- Module 5: Somatic Mutations and Annotations
- Module 6: Gene Expression
Day 4
- Module 7: Gene Fusion and Rearrangements
- Module 8: Variants to Networks
Day 5
- Module 8: Variants to Networks
- Module 9: Clinical Data Integration
Informatics for RNA-Seq Analysis 2017
课程链接:http://bioinformatics-ca.github.io/informatics_for_rna_seq_analysis_2016/
Day 1
- Module 1: Introduction to RNA Sequencing and Analysis
- Module 2: RNA-seq alignment and visualization
Day 2
- Module 3: Expression and Differential Expression
- Module 4: Reference Free Alignment
- Module 5: Isoform discovery and alternative expression
Day 3
- Module 6: Genome-Free De Novo Transcriptome Assembly
- Module 7: Functional Annotation and Analysis of Transcripts
Informatics on High-Throughput Sequencing Data 2017
课程链接:https://bioinformaticsdotca.github.io/htseq_2017
Day 1
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
Day 2
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
Informatics and Statistics for Metabolomics 2017
课程链接:https://bioinformaticsdotca.github.io/metabolomics_2017
Day 1
- Module 1: Introduction to Metabolomics
- Module 2: Metabolite Identification and Annotation
- Module 3: Databases for Chemical, Spectral, and Biological Data
Day 2
- Module 4: Backgrounder in Statisticss
- Module 5: MetaboAnalyst
- Module 6: Future of Metabolomics
Epigenomic Data Analysis 2017
课程链接:https://bioinformaticsdotca.github.io/epigenomics_2017
Day 1
- Module 1: Introduction to ChIP Sequencing and Analysis
- Module 2: ChIP-Seq Alignment, Peak Calling, and Visualization
Day 2
- Module 3: Introduction to WGBS and Analysis
- Module 4: Downstream Analyses and Integrative Tools
Microbiome Summer School - Big Data Analytics for Omics Science 2017
课程链接:https://bioinformaticsdotca.github.io/mss_2017
Day 1
- Plenary 1: GUTOME 1010 and Beyond
- Plenary 2: Microbiomes, Metagenomes, and Marker Genes
- Plenary 3: Metagenomics Analysis
Day 2
- Plenary 4: Microbiome Biomarker Discovery
- Plenary 5: Metatranscriptomics
Day 3
- Plenary 6: Host Genomics Applied to the Microbiome
- Plenary 7: Introduction to Machine Learning for Biological Data
Day 4
- Plenary 8: ElasticSearch to Facilitate Data Mining of Human Microbiome Databases
- Plenary 9: Algorithms for Mass Spectrometry
- Plenary 10: Efficient Multi-Locus Biomarker Discovery
文末友情宣传
强烈建议你推荐给身边的博士后以及年轻生物学PI,多一点数据认知,让他们的科研上一个台阶:
- 全国巡讲全球听(买一得五),第二期 ,你的生物信息学入门课
- 生信技能树的2019年终总结 ,你的生物信息学成长宝藏
- 2020学习主旋律,B站74小时免费教学视频为你领路
2016
Pathway and Network Analysis of -Omics Data 2016
课程链接:http://bioinformatics-ca.github.io/pathway_and_network_analysis_of_omics_data_2016/
Day 1
- Module 1: Introduction to Pathway and Network Analysis
- Module 2: Finding Over-Represented Pathways in Gene Lists
- Module 3: Network Visualization and Analysis with Cytoscape
Day 2
- Module 4: More Depth on Pathway and Network Analysis
- Module 5: Gene Function Prediction
Day 3
- Module 6: Regulatory Network Analysis
Introduction to R 2016
课程链接:http://bioinformatics-ca.github.io/introduction_to_r_2016/
Day 1
- Module 1: The R Environment
- Module 2: Programming Basics
- Module 3: Using R for Data Analysis
Exploratory Analysis of Biological Data Using R 2016
课程链接:http://bioinformatics-ca.github.io/exploratory_analysis_of_biological_data_2016/
Day 1
- Module 1: Exploratory Data Analysis
- Module 2: Regression Analysis
- Module 3: Dimension Reduction
Day 2
- Module 4: Clustering Analysis
- Module 5: Hypothesis Testing for EDA
Bioinformatics for Cancer Genomics 2016
课程链接:http://bioinformatics-ca.github.io/bioinformatics_for_cancer_genomics_2016/
Day 1
- Module 1: Introduction to cancer genomics
- Module 2.1: Databases and Visualization Tools
- Module 2.2: Logging into the Cloud
Day 2
- Module 3: Mapping and Genome Rearrangement
- Module 4: Gene Fusion Discovery
Day 3
- Module 5: Copy Number Alterations
- Module 6: Somatic Mutations
Day 4
- Module 7: Gene Expression Profiling
- Module 8: Variants to Pathways
- Part 1: How to annotate variants and prioritize potentially relevant ones
- Part 2: From genes to pathways
Day 5
Network Analysis using Reactome
Informatics for RNA-Seq Analysis 2016
课程链接:http://bioinformatics-ca.github.io/informatics_for_rna_seq_analysis_2016/
Day 1
- Module 0: Introduction to Cloud Computing
- Module 1: Introduction to RNA Sequencing and Analysis
- Module 2: RNA-seq alignment and visualization
Day 2
- Module 3: Expression and Differential Expression
- Module 4: Isoform discovery and alternative expression
- Module 5: Reference Free Alignment
Informatics on High-Throughput Sequencing Data 2016
课程链接:http://bioinformatics-ca.github.io/informatics_on_high-throughput_sequencing_data_2016/
Day 1
- Module 1: Introduction to HT-sequencing and Cloud Computing
- Module 2: Genome Alignment
- Module 3: Genome Visualization
- Module 4: De Novo Assembly
Day 2
- Module 5: Genome Variation
- Module 6: Genome Structural Variation
- Module 7: Bringing it Together with Galaxy
Informatics and Statistics for Metabolomics 2016
课程链接:http://bioinformatics-ca.github.io/informatics_and_statistics_for_metabolomics_2016/
Day 1
- Module 1: Introduction to Metabolomics
- Module 2: Metabolite Identification and Annotation
- Module 3: Databases for Chemical, Spectral, and Biological Data
Day 2
- Module 4: Backgrounder in Statistical Methods
- Module 5: MetaboAnalyst
- Module 6: Future of Metabolomics
Epigenomic Data Analysis 2016
课程链接:http://bioinformatics-ca.github.io/epigenomic_data_analysis_2016/
Day 1
- Module 1: Introduction to ChIP Sequencing and Analysis
- Module 2: ChIP-Seq Alignment, Peak Calling, and Visualization
Day 2
- Module 3: Introduction to WGBS and Analysis
- Module 4: Downstream Analyses and Integrative Tools
Analysis of Metagenomic Data 2016
课程链接:http://bioinformatics-ca.github.io/analysis_of_metagenomic_data_2016/
Day 1
- Module 1: Introduction to Metagenomics and Computing in the Cloud
- Module 2: Marker Gene-based Analysis of Taxonomic Composition
- Module 3: Introduction to PICRUSt
Day 2
- Module 4: Metagenomic Taxonomic Composition
- Module 5: Metagenomic Functional Composition
Day 3
- Module 6: Metatranscriptomics
- Module 7: Biomarker Selection
2015
High-Throughput Biology - From Sequence to Networks 2015
课程链接:http://bioinformatics-ca.github.io/high_throughput_biology_2015/
Day 1
- Module 1: Overview of HT-sequencing & Cloud Computing
- Module 2: Reference Genome Alignment
- Module 3: Data Visualization
- Module 4: De Novo Assembly
Day 2
- Module 5: Small variant calling & annotation
- Module 6: Structural variation calling
- Module 7: Bringing it all Together: Galaxy
Day 3
- Module 8: Introduction to RNA sequencing and analysis
- Module 9: RNA-seq alignment and visualization
Day 4
- Module 10: Expression and Differential Expression
- Module 11: Isoform discovery and alternative expression
Day 5
- Module 12: Introduction to Pathway and Network Analysis
- Module 13: Finding over-represented pathways in gene lists
- Module 14: Cytoscape Intro, Demo and Enrichment Maps
Day 6
- Module 15: Depth on Pathway and Network Analysis
- Module 16: Gene Function Prediction
Day 7
- Module 17: Gene Regulation Network Analysis
Introduction to R 2015
课程链接:http://bioinformatics-ca.github.io/introduction_to_r_2015/
Day 1
- Module 1: First Steps
- Module 2: Programming Basics
- Module 3: Using R for Data Analysis
Exploratory Analysis of Biological Data Using R 2015
课程链接:http://bioinformatics-ca.github.io/EDA_in_r_2015/
Day 1
- Module 1: Exploratory Data Analysis
- Module 2: Regression Analysis
- Module 3: Dimension Reduction
Day 2
- Module 4: Clustering Analysis
- Module 5: Hypothesis Testing for EDA
Bioinformatics for Cancer Genomics 2015
课程链接:http://bioinformatics-ca.github.io/bioinformatics_for_cancer_genomics_2015/
Day 1
- Module 1: Introduction to cancer genomics
- Module 2: Databases and Visualization Tools
Day 2
- Module 3: Alignment and Genome rearrangements
- Module 4: Gene Fusion Discovery
Day 3
- Module 5: Copy Number Alterations
- Module 6: Somatic Mutations
Day 4
- Module 7: Gene Expression Profiling
- Module 8: Variants to Pathways
Day 5
Network Analysis using Reactome FI
Pathway and Network Analysis of Omics Data 2015
课程链接:http://bioinformatics-ca.github.io/pathway_and_network_analysis_2015/
Day 1
- Module 1: Introduction to Pathway and Network Analysis
- Module 2: Finding over-represented pathways in gene lists
- Module 3: Cytoscape Intro, Demo and Enrichment Maps
Day 2
- Module 4: Depth on Pathway and Network Analysis
- Module 5: Gene Function Prediction
Day 3
- Module 6: Gene Regulation Network Analysis
Informatics for RNA-Seq Analysis 2015
课程链接:http://bioinformatics-ca.github.io/rnaseq_analysis_2015/
Day 1
- Module 1: Introduction to RNA sequencing and analysis
- Module 2: RNA-seq alignment and visualization
Day 2
- Module 3: Expression and Differential Expression
- Module 4: Isoform discovery and alternative expression
Informatics on High-Throughput Data 2015
课程链接:http://bioinformatics-ca.github.io/high-throughput_sequencing_2015/
Day 1
- Module 1: Overview of HT-sequencing & Cloud Computing
- Module 2: Reference-guided Genome Alignment
- Module 3: Data Visualization
- Module 4: De Novo Assembly
Day 2
- Module 5: Small variant calling & annotation
- Module 6: Structural variation calling
- Module 7: Bringing it all Together: Galaxy
Informatics and Statistics for Metabolomics 2015
课程链接:http://bioinformatics-ca.github.io/informatics_and_statistics_for_metabolomics_2015/
Day 1
- Module 1: Introduction to Metabolomics
- Module 2: Software for Metabolite ID and Quantification
- Module 3: Databases for Chemical, Spectral and bIological Data
Day 2
- Module 4: Backgrounder in Statistics
- Module 5: MetaboAnalyst
- Module 6: Future of Metabolomics
2013 主要是用 R 分析芯片数据和流式细胞数据
Microarray Data Analysis
课程链接是:
http://bioinformatics-ca.github.io/microarrays_2013/Day 1
- Module 1: Introduction to Microarrays and R
Lecture:
Module 1 pdf
Module 1 ppt
Module 1 mp4
Lab Practical:
Modules 1-3 Lab questions - Module 2: Quality Control of Microarrays
Lecture:
Module 2 pdf
Module 2 ppt
Module 2 mp4
Lab Practical:
Modules 1-3 Lab questions
Day 1 analysis scriptDay 2
- Module 3: Statistical Analysis
Lecture:
Module 3 pdf
Module 3 ppt
Module 3 mp4
Clustering Slides
Lab Practical:
Modules 1-3 Lab questions
Status of R script at 11:55am
Status of R script at 12:33pm
Status of R script at 4:24pm
R script with MAS5 - Module 4: Beyond the Microarray Experiment
Lecture:
Module 4 pdf
Module 4 ppt
Module 4 mp4Flow Cytometry Data Analysis using R
课程链接是:
http://bioinformatics-ca.github.io/flow_cytometry_2013/Day 1
- Module 1: Introduction to Flow Cytometry Analysis in R
Lecture:
Module 1 pdf
Module 1 mp4 - Module 2: Exploring FCM data in R
Lecture:
Module 2 pdf
Module 2 mp4
Lab Practical:
Module 2 Lab
PlottingReference.R - reference, summary and tutorial for plot functions in R. - Module 3: Preprocessing and Quality Assurance of FCM Data
Lecture:
Module 3 pdf
Module 3 mp4
Lab Practical:
Module 3 LabDay 2
- Module 4: Automated Cell Population Identification
Lecture:
Module 4 pdf
Module 4 mp4 - Module 5: 1D Automated Gating
Lecture:
Module 5 pdf
Module 5 mp4
Lab Practical:
Module 5 Lab - Module 6: Additional FCM Tools
Lecture:
Module 6 pdf
Module 6 mp4
文末友情宣传
强烈建议你推荐给身边的博士后以及年轻生物学PI,多一点数据认知,让他们的科研上一个台阶:
- 全国巡讲全球听(买一得五),第二期 ,你的生物信息学入门课
- 生信技能树的2019年终总结 ,你的生物信息学成长宝藏
- 2020学习主旋律,B站74小时免费教学视频为你领路