作为生物信息学教学队伍的财务一名,我旁观了大量代码实战技巧,也勉强是学会了一下R语言,恰好看到朋友圈单细胞比较火爆,而且群主的CNS图表复现超级容易理解,我也跟着学习了一下,目录如下:
- CNS图表复现01—读入csv文件的表达矩阵构建Seurat对象
- CNS图表复现02—Seurat标准流程之聚类分群
- CNS图表复现03—单细胞区分免疫细胞和肿瘤细胞
- CNS图表复现04—单细胞聚类分群的resolution参数问题
- CNS图表复现05—免疫细胞亚群再分类
- CNS图表复现06—根据CellMarker网站进行人工校验免疫细胞亚群
- CNS图表复现07—原来这篇文章有两个单细胞表达矩阵
- CNS图表复现08—肿瘤单细胞数据第一次分群通用规则
- CNS图表复现09—上皮细胞可以区分为恶性与否
- CNS图表复现10—表达矩阵是如何得到的
- CNS图表复现11—RNA-seq数据可不只是表达量矩阵结果
- CNS图表复现12—检查原文的细胞亚群的标记基因
- CNS图表复现13—使用inferCNV来区分肿瘤细胞的恶性与否
- CNS图表复现14—检查文献的inferCNV流程
- CNS图表复现15—inferCNV流程输入数据差异大揭秘
- CNS图表复现16—inferCNV结果解读及利用
- CNS图表复现17—inferCNV结果解读及利用之进阶
所以我恳请群主也给了我一个作业题,就是数据集GSE129516,通常读取10x数据需要三个文件:barcodes.tsv, genes.tsv, matrix.mtx,但是这个研究者仅仅是上传了matrix文件。本来呢,我之前似乎看到过教程,将表达矩阵逆转为10x的标准输出三个文件,还是直接用readMM()读入稀疏矩阵然后转为普通矩阵然后构建seurat对象。但是感觉太麻烦了,很明显我的技术是hold不住的啊!
这个数据集GSE129516,就是拿到了如下所示的数据文件:
我首先读取了一个文件,看了看,就是表达矩阵,所以直接CreateSeuratObject即可,都省去了3个文件的组合命令。
首先批量读取每个10x样品的表达矩阵
保证当前工作目录下面有后缀是matrices.csv.gz的文件,就是前面下载的6个文件:
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
fs=list.files(pattern = 'matrices.csv.gz')
fs
sceList <- lapply(fs, function(x){
a=read.csv( x )
a[1:4,1:4]
raw.data=a[,-1]
rownames(raw.data)=a[,1]
library(stringr)
p=str_split(x,'_',simplify = T)[,2]
sce <- CreateSeuratObject(counts = raw.data,project = p )
})
每个matrices.csv.gz文件都读取后,提供CreateSeuratObject构建成为对象。如果是读取10x数据需要三个文件:barcodes.tsv, genes.tsv, matrix.mtx,那个更简单哦!
然后使用seurat最出名的多个10x合并算法
多个单细胞对象的整合,这里直接使用标准代码即可:
pro='integrated'
for (i in 1:length(sceList)) {
sceList[[i]] <- NormalizeData(sceList[[i]], verbose = FALSE)
sceList[[i]] <- FindVariableFeatures(sceList[[i]], selection.method = "vst",
nfeatures = 2000, verbose = FALSE)
}
sceList
sce.anchors <- FindIntegrationAnchors(object.list = sceList, dims = 1:30)
sce.integrated <- IntegrateData(anchorset = sce.anchors, dims = 1:30)
因为是6个10X样品,所以这个步骤会略微有点耗费时间哦!
接着走标准的降维聚类分群
因为是构建好的对象,所以后续分析都是常规代码:
library(ggplot2)
library(cowplot)
# switch to integrated assay. The variable features of this assay are automatically
# set during IntegrateData
DefaultAssay(sce.integrated) <- "integrated"
# Run the standard workflow for visualization and clustering
sce.integrated <- ScaleData(sce.integrated, verbose = FALSE)
sce.integrated <- RunPCA(sce.integrated, npcs = 30, verbose = FALSE)
sce.integrated <- RunUMAP(sce.integrated, reduction = "pca", dims = 1:30)
p1 <- DimPlot(sce.integrated, reduction = "umap", group.by = "orig.ident")
p2 <- DimPlot(sce.integrated, reduction = "umap", group.by = "orig.ident", label = TRUE,
repel = TRUE) + NoLegend()
plot_grid(p1, p2)
p2
ggsave(filename = paste0(pro,'_umap.pdf') )
sce=sce.integrated
DimHeatmap(sce, dims = 1:12, cells = 100, balanced = TRUE)
ElbowPlot(sce)
sce <- FindNeighbors(sce, dims = 1:15)
sce <- FindClusters(sce, resolution = 0.2)
table(sce@meta.data$integrated_snn_res.0.2)
sce <- FindClusters(sce, resolution = 0.8)
table(sce@meta.data$integrated_snn_res.0.8)
DimPlot(sce, reduction = "umap")
ggsave(filename = paste0(pro,'_umap_seurat_res.0.8.pdf') )
DimPlot(sce, reduction = "umap",split.by = 'orig.ident')
ggsave(filename = paste0(pro,'_umap_seurat_res.0.8_split.pdf') )
save(sce,file = 'integrated_after_seurat.Rdata')
最后对聚类的不同细胞亚群进行注释
前面呢是标准的聚类分群,每个细胞亚群仅仅是一个编号,实际上还需要给予它们一定的生物学意义,我们这里采用SingleR的标准代码:
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
load(file = 'integrated_after_seurat.Rdata')
DefaultAssay(sce) <- "RNA"
# for B cells : cluster, 1,21
VlnPlot(object = sce, features ='Cd19',log =T )
VlnPlot(object = sce, features ='Cd79a',log =T )
library(SingleR)
sce_for_SingleR <- GetAssayData(sce, slot="data")
clusters=sce@meta.data$seurat_clusters
mouseImmu <- ImmGenData()
pred.mouseImmu <- SingleR(test = sce_for_SingleR, ref = mouseImmu, labels = mouseImmu$label.main,
method = "cluster", clusters = clusters,
assay.type.test = "logcounts", assay.type.ref = "logcounts")
mouseRNA <- MouseRNAseqData()
pred.mouseRNA <- SingleR(test = sce_for_SingleR, ref = mouseRNA, labels = mouseRNA$label.fine ,
method = "cluster", clusters = clusters,
assay.type.test = "logcounts", assay.type.ref = "logcounts")
cellType=data.frame(ClusterID=levels(sce@meta.data$seurat_clusters),
mouseImmu=pred.mouseImmu$labels,
mouseRNA=pred.mouseRNA$labels )
head(cellType)
sce@meta.data$singleR=cellType[match(clusters,cellType$ClusterID),'mouseRNA']
pro='first_anno'
DimPlot(sce,reduction = "umap",label=T, group.by = 'singleR')
ggplot2::ggsave(filename = paste0(pro,'_tSNE_singleR.pdf'))
DimPlot(sce,reduction = "umap",label=T,split.by ='orig.ident',group.by = 'singleR')
ggplot2::ggsave(filename = paste0(pro,'_tSNE_singleR_by_orig.ident.pdf'))
save(sce,file = 'last_sce.Rdata')
出图如下:
可以看到效果还是杠杆的,而且我全程都是标准代码,就是follow群主的教程即可,我的R也是半吊子水平,只有你敢动手,这个图你也可以自己亲手做出来哦。
并不是R基础知识不重要
再怎么强调生物信息学数据分析学习过程的计算机基础知识的打磨都不为过,我把它粗略的分成基于R语言的统计可视化,以及基于Linux的NGS数据处理:
把R的知识点路线图搞定,如下:
- 了解常量和变量概念
- 加减乘除等运算(计算器)
- 多种数据类型(数值,字符,逻辑,因子)
- 多种数据结构(向量,矩阵,数组,数据框,列表)
- 文件读取和写出
- 简单统计可视化
- 无限量函数学习