单细胞转录组的质控降维聚类分群和注释哪个步骤最关键

我们非常强调进入一个领域需要读综述来获取基本认知,尤其是单细胞,我们在《单细胞天地》公众号给大家精选了2017-2020的4篇综述:

2017年7月的 Identifying cell populations with scRNASeq 
| https://www.ncbi.nlm.nih.gov/pubmed/28712804 
2018年2月的 Single-cell RNA sequencing: Technical advancements and biological applications
| https://www.ncbi.nlm.nih.gov/pubmed/28754496 
2019年9月的 Current best practices in single-cell RNA-seq analysis: a tutorial
| https://www.ncbi.nlm.nih.gov/pubmed/31217225 
2020年3月的 Tools for the analysis of high-dimensional single-cell RNA sequencing data
| https://www.ncbi.nlm.nih.gov/pubmed/32221477

大家可以自行前往《单细胞天地》公众号寻找其对应的中文翻译整理版本,现在是2021了,所以再加一个综述:《Critical downstream analysis steps for single-cell RNA sequencing data》,Briefings in Bioinformatics, , https://doi.org/10.1093/bib/bbab105

  • PIPELINE FOR ANALYSING scRNA-seq TECHNOLOGY
  • QUALITY CONTROL AND DIFFERENTIAL GENE EXPRESSION ANALYSIS
  • CLUSTERING
  • TRAJECTORY INFERENCE
  • CELL-TYPE ANNOTATION
  • INTEGRATING DATASETS

主要是这个综述罗列了大量的工具, Table 1. Clustering methods for single-cell RNA sequencing data

image-20210414190318873

还有

  • Table 2. Trajectory inference methods for single-cell RNA sequencing data
  • Table 3. Cell-type annotation methods for single-cell RNA sequencing data
  • Table 4. Popular data resources for cell-type annotation
  • Table 5. Integrating datasets methods for single-cell RNA sequencing data

挺容易看懂的,今年入坑单细胞的,可以优先看看这个!其实这样的基础认知,也可以看基础10讲:

最基础的往往是降维聚类分群,参考前面的例子:人人都能学会的单细胞聚类分群注释

Comments are closed.