不要过度神话英文专业书籍

七八年前我开始自学生物信息学的时候,乐此不疲的收集了很多相关英文pdf书籍,比如:

Application of Clinical Bioinformatics.pdf
Bioinformatics_data_skill.pdf
C. Alexander Valencia,Next Generation Sequencing Technologies in Medical Genetics.pdf
Ernesto Picardi eds. RNA Bioinformatics.pdf
Information Resources Management Association Bioinformatics concepts, methodologies, tools, and applications.pdf
Jason Kinser Computational Methods for Bioinformatics for Python 3.4.pdf
Lisa D. White Ph.D. auth., Lee-Jun C. Wong eds. Next Generation Sequencing Translation to Clinical Diagnostics.pdf
Paurush Praveen Sinha Bioinformatics with R Cookbook.pdf
RNA-seq data analysis.pdf
Wang, Xinkun Next-Generation Sequencing Data Analysis.pdf
Ying Xu, Juan Cui, David Puett auth. Cancer Bioinformatics.pdf
clinical-application-of-NGS.pdf

以及:

好书推荐-遗传工作者的生物信息学第一版2003-英文高清.pdf
好书推荐-遗传工作者的生物信息学第二版-英文高清.pdf
好书推荐-高通量测序的生信分析综述集.pdf
生信傻瓜手册-通过RNA-seq来了解生信全部必备知识.pdf
生信算法-Applied Statistics for Bioinformatics using R.pdf
生信算法-Statistical-Methods-in-Bioinformatics.pdf
生信算法-introduction.to.bioinformatics.algorithms.pdf
生信算法-mathematics_of_bioinformatics.pdf
看看-advanced_bash.pdf
看看-生信算法讲义.pdf
看看-生物信息学札记-2010年(第三版).pdf
芬兰赫尔辛基大学的生信硕士课程全套ppt-非常精美.pdf
需要打印书籍-Thinking_in_perl.pdf
需要打印的书籍-R语言实战(中文完整版).pdf
需要打印的书籍-bash_freshman.pdf
需要打印的书籍-生物信息学算法.pdf

当时以这些材料作为资源组建了生信菜鸟团qq群,但实际上呢聚集的都是一波跟我一样有“松鼠症”的小伙伴,真正看过这些数据的寥寥无几。我甚至还打印了其中基本,但是也没有翻过几次,而且最近时不时就看到朋友圈有人集赞转发求这些书籍的pdf资源,其实大可不必,首先你未必真的去看,其次它肯定是在网络公开可以检索到的!

更重要的是,现在的我回过头来看,其实我视为珍宝的这些英文书籍也并非什么了不起的传世之作。完全没有必要过度神话英文专业书籍,比如我最近看到了 First Online: 10 April 2021的书籍 《RNA Bioinformatics 》,其中的一个章节《Normalization of Single-Cell RNA-Seq Data》,链接是:https://link.springer.com/protocol/10.1007/978-1-0716-1307-8_17 ,这个书籍其实关于单细胞的有4个章节:

  • 16 Computational Analysis of Single-Cell RNA-Seq
  • 17 Normalization of Single-Cell RNA-Seq
  • 18 Dimensionality Reduction of Single-Cell RNA-Seq
  • 19 Single-Cell RNA Sequencing Analysis: A Step-by-Step

RNA书籍

我这些天其实已经在我们《生信技能树》的各个社区都发放了这个书籍,如果你确实不知道如何搜索,找不到这个书籍,想办法进一些社区,或者很多高校单位都是有这个书籍的开放获取权限的!

实际上呢,我看了看内容,根本就比不上我们在《单细胞天地》公众号一直宣传的两个在线教程 :

其中sanger的单细胞系列课程 是Hemberg课题组负责的:《Analysis of single cell RNA-seq data》,内容目录如下:

Table of Contents
1 About the course
2 Introduction to single-cell RNA-seq
3 Processing Raw scRNA-seq Data
4 Construction of expression matrix
5 Introduction to R/Bioconductor
6 Tabula Muris
7 Cleaning the Expression Matrix
8 Biological Analysis
9 Seurat
10 “Ideal” scRNAseq pipeline (as of Oct 2017)
11 Advanced exercises
12 Resources
13 References

而broad研究所的单细胞教程是《ANALYSIS OF SINGLE CELL RNA-SEQ DATA》,内容目录如下:

Type to search (Enter for navigation)
ANALYSIS OF SINGLE CELL RNA-SEQ DATA
1 Introduction
1.1 COURSE OVERVIEW
1.2 TARGETED AUDIENCE & ASSUMED BACKGROUND
1.3 COURSE FORMAT
1.4 Getting Started
1.5 SESSION CONTENT
2 Transcriptome Quantification
2.1 Google Slides
3 Expression QC and Normalization
3.1 Google Slides
4 Data Wrangling scRNAseq
4.1 Goal
4.2 Introduction
4.3 Filtering low-quality cells
4.4 Beginning with Seurat:
4.5 Preprocessing step 1 : Filter out low-quality cells
4.6 Examine contents of Seurat object
4.7 Detection of variable genes across the single cells
4.8 Gene set expression across cells
5 Identifying Cell Populations
5.1 Google Slides
6 Feature Selection and Cluster Analysis
6.1 Abstract
6.2 Seurat Tutorial Redo
6.3 Feature Selection
6.4 Other Options For Analysis
7 Single Cell Resources
7.1 Comprehensive list of single-cell resources
7.2 Computational packages for single-cell analysis
7.3 eLife Commentary on the Human Cell Atlas
7.4 Online courses

其它资源我们《单细胞天地》公众号已经是多次推荐啦, 就不赘述:

这些教程都比April 2021的书籍 《RNA Bioinformatics 》好太多了,如果以后再有人在朋友圈转发求它的pdf,你就可以把这个推文甩给他!

如果你没有单细胞转录组认知,需要先看看基础10讲:

最基础的往往是降维聚类分群,参考前面的例子:人人都能学会的单细胞聚类分群注释

文末友情推荐

Comments are closed.