我们以前就提到过:很多出名的单细胞数据集,比如Pollen et al. 2014 数据集,本质上属于地址为https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/ ,的宝藏网页。
也就是说,很多单细胞转录组数据集,都是被scRNAseq包整理好了,比如Pollen et al. 2014 数据集,使用scRNAseq包的函数ReprocessedFluidigmData() 就可以下载该数据集:
library(scRNAseq)
fluidigm <- ReprocessedFluidigmData()
fluidigm
这个包 里面的全部数据集如下;
[1] "AztekinTailData()" "BachMammaryData()" "BaronPancreasData('human')"
[4] "BaronPancreasData('mouse')" "BuettnerESCData()" "CampbellBrainData()"
[7] "ChenBrainData()" "GrunHSCData()" "GrunPancreasData()"
[10] "HermannSpermatogenesisData()" "HuCortexData()" "KolodziejczykESCData()"
[13] "LaMannoBrainData('human-es')" "LaMannoBrainData('human-embryo')" "LaMannoBrainData('human-ips')"
[16] "LaMannoBrainData('mouse-adult')" "LaMannoBrainData('mouse-embryo')" "LawlorPancreasData()"
[19] "LengESCData()" "LunSpikeInData('416b')" "LunSpikeInData('tropho')"
[22] "MacoskoRetinaData()" "ReprocessedTh2Data()" "MairPBMCData()"
[25] "KotliarovPBMCData()" "MarquesBrainData()" "MessmerESCData()"
[28] "MuraroPancreasData()" "NestorowaHSCData()" "PaulHSCData()"
[31] "ReprocessedFluidigmData()" "RichardTCellData()" "RomanovBrainData()"
[34] "SegerstolpePancreasData()" "ShekharRetinaData()" "StoeckiusHashingData(mode='mouse')"
[37] "StoeckiusHashingData(mode='human')" "StoeckiusHashingData(type='mixed')" "UsoskinBrainData()"
[40] "TasicBrainData()" "ReprocessedAllenData()" "WuKidneyData()"
[43] "XinPancreasData()" "ZeiselBrainData()" "ZilionisLungData()"
[46] "ZilionisLungData('mouse')"
可以在网络情况好的时候,批量下载哦!
library(scRNAseq)
out <- listDatasets()
lapply( out$Call , function(x){
pro= gsub("'",'-', gsub('[()]','', x ))
print(pro)
f=paste0( pro ,
'.Rdata')
if( ! file.exists(f)){
sce=eval(parse(text=x))
save(sce,file = f)
}
})
可以看到,数据量并不大!全部保存好,慢慢做!
六月份我们安排学徒们做了20篇数据挖掘文献的图表复现,这个月我们准备安排学员们开始做这个scRNAseq包整理好的单细胞转录组数据集的分析!
敬请期待