前面我们跑完了hisat2和stringtie流程,拿到了组装好的gtf文件。详见:LncRNA鉴定上游分析
接下来就需要对组装好的gtf文件里面的lincRNA 进行一系列的评估和过滤操作。
Gffcompare 获取转录本组装情况
我使用的代码是:
gtf=$HOME/reference/human/gtf/gencode.v37.annotation.gtf
nohup gffcompare -R -r $gtf -o ./merged ../05.stringtie/02.merge_gtf/stringtie_merged.gtf > gffcompare.log 2>&1 &
# 查看比对结果的准确性和预测率。
cat merged.stats
#= Summary for dataset: ../05.stringtie/02.merge_gtf/stringtie_merged.gtf
# Query mRNAs : 433529 in 70170 loci (403256 multi-exon transcripts)
# (26951 multi-transcript loci, ~6.2 transcripts per locus)
# Reference mRNAs : 232728 in 56612 loci (207676 multi-exon)
# Super-loci w/ reference transcripts: 50985
#-----------------| Sensitivity | Precision |
Base level: 99.6 | 25.3 |
Exon level: 85.7 | 58.0 |
Intron level: 99.4 | 65.9 |
Intron chain level: 98.7 | 50.8 |
Transcript level: 97.4 | 52.3 |
Locus level: 96.0 | 71.4 |
Matching intron chains: 204982
Matching transcripts: 226593
Matching loci: 54373
Missed exons: 453/638637 ( 0.1%)
Novel exons: 185652/937901 ( 19.8%)
Missed introns: 667/388679 ( 0.2%)
Novel introns: 100294/586077 ( 17.1%)
Missed loci: 0/56612 ( 0.0%)
Novel loci: 19167/70170 ( 27.3%)
Total union super-loci across all input datasets: 70152
433529 out of 433529 consensus transcripts written in ./merged.annotated.gtf (0 discarded as redundant)
# 统计class code 类型
awk '$3!~/class/ {print $3}' merged.stringtie_merged.gtf.tmap | sort -V | uniq -c
1075 c
1 e
23378 i
95142 j
21682 k
8203 m
22690 n
7640 o
201 p
27 s
13609 u
10689 x
1087 y
228105 =
得到如下文件:
total 607M
145 2月 18 20:24 gffcompare.log
488M 2月 18 20:24 merged.annotated.gtf
15M 2月 18 20:24 merged.loci
1.4K 2月 18 20:24 merged.stats
12M 2月 18 20:24 merged.stringtie_merged.gtf.refmap
45M 2月 18 20:24 merged.stringtie_merged.gtf.tmap
49M 2月 18 20:24 merged.tracking
接下来主要的操作对象是 merged.stringtie_merged.gtf.tmap 文件。
step1:保留指定class_code的transcripts
过滤,只保留class_code=”u”,”x”,”i”,”j”,”o”的 transcripts ,这个时候需要参考 stringtie官网提供的分类 :
我使用的脚本:
#过滤,只保留class_code="u","x","i","j","o"的 transcripts
awk '{if ($3=="u" || $3=="x" || $3=="i" || $3=="j" || $3=="o"){print $0}}' ~/lncRNA_project/06.gffcompare/merged.stringtie_merged.gtf.tmap > filter1_by_uxijo.tmap
$ wc -l filter1_by_uxijo.tmap
150458 filter1_by_uxijo.tmap
#获取剩余transcripts的exons位置信息,提取序列并组装成转录本序列
# 获取剩余的transcripts的ID
awk '{print $5}' filter1_by_uxijo.tmap > filter1_transcript_ID
$ wc -l filter1_transcript_ID
150458 filter1_transcript_ID
# 剩余的transcripts得到gtf
grep -w -Ff filter1_transcript_ID -w ~/lncRNA_project/06.gffcompare/merged.annotated.gtf > filter1_transcript.gtf
# 把filter2_transcript.gtf中的class_code "=" 替换为L
# 去除剩余为去除的class_code "="
awk -F ';' '{if ($8!=" L"){print $0}}' filter1_transcript.gtf > filter1
mv filter1 filter1_transcript.gtf
$ wc -l filter1_transcript.gtf
1596482 filter1_transcript.gtf
step2: 根据长度进行过滤
过滤,只保留exon>1并且长度>200bp的transcripts
# 过滤,只保留exon>1并且长度>200bp的transcripts
awk '($6>1 && $10>=200){print$0}' ../step1/filter1_by_uxijo.tmap > filter2_by_exon_length.tmap
$ wc -l filter2_by_exon_length.tmap
145635 filter2_by_exon_length.tmap
awk '{print $5}' filter2_by_exon_length.tmap > filter2_transcript_ID
grep -Ff filter2_transcript_ID -w ../step1/filter1_transcript.gtf > filter2_transcript.gtf
# 剩余transcripts的exon组成gtf
awk '($3=="exon"){print$0}' filter2_transcript.gtf > filter2_transcript_exon.gtf
# 根据exon位置信息提取基因组序列,组装成转录本序列
gffread -w filter2_transcript_exon.fa -g /home/data/server/reference/genome/hg38/hg38.fa ./filter2_transcript_exon.gtf
$ grep -c "^>" filter2_transcript_exon.fa
145635
这个步骤的 保留exon>1的选择是值得商榷的, 也有很多流程里面,并不会做这个操作。
step3:转录本编码能力预测
转录本编码能力预测,主要是4个软件,需要取交集:
nohup cpat.py -x ../dat/Human_Hexamer.tsv \
-d ../dat/Human_logitModel.RData \
-g ~/lncRNA_project/07.identification/step2/filter2_transcript_exon.fa \
-o ~/lncRNA_project/07.identification/step3/CPAT/cpat_result.txt > cpat.log 2>&1 &
nohup Rscript ./LncFinder.R > LncFinder.log 2>&1 &
conda create -n py2test python=2.7
mamba create -n py2test python=2.7
conda install biopython=1.70
nohup python CPC2.py -i ~/lncRNA_project/07.identification/step2/filter2_transcript_exon.fa -o ~/lncRNA_project/07.identification/step3/CPC2/CPC2_result.txt > cpc2.log 2>&1 &
nohup python CNCI.py \
-f ~/lncRNA_project/07.identification/step2/filter2_transcript_exon.fa \
-o ~/lncRNA_project/07.identification/step3/CNCI \
-m ve \
-p 4 > cnci.log 2>&1 &
nohup python PLEK.py \
-fasta ~/lncRNA_project/07.identification/step2/filter2_transcript_exon.fa \
-out ~/lncRNA_project/07.identification/step3/plek/plek \
-thread 4 > plek.log 2>&1 &
less CPC2_result.txt|grep 'noncoding'|awk '{print $1}'> CPC2_id.txt
$ wc -l CPC2_id.txt
55359 CPC2_id.txt
less -S cpat_result.txt|awk '($6<0.364){print $1}' > cpat_id.txt
sed -i '1d' file
$ wc -l cpat_id.txt
51956 cpat_id.txt
less lncFinder_result.txt|grep -w 'NonCoding' > lncFinder_id.txt
$ wc -l lncFinder_id.txt
52442 lncFinder_id.txt
less -S plek | grep -w 'Non-coding' |awk '{print $3}' |sed 's/>//g' > plek_id.txt
$ wc -l plek_id.txt
55996 plek_id.txt
# 4个软件取交集
cat *txt |sort |uniq -c |awk '{if( $1==4){print}}'|wc
step4:比对到Pfam据库
比对到Pfam据库,过滤 (E-value < 1e-5)
# 使用Transeq 将转录本序列翻译为6个可能的蛋白序列
transeq ../step3/intersection/filter3_by_noncoding_exon.fa filter4_protein.fa -frame=6
conda install pfam_scan
nohup pfam_scan.pl -fasta ./filter4_protein.fa -dir /home/data/lihe/database/Pfam/ -out Pfam_scan.out > Pfam_scan.log 2>&1 &
# 过滤 (E-value < 1e-5)
grep -v '^#' Pfam_scan.out | grep -v '^\s*$' | awk '($13< 1e-5){print $1}'| awk -F "_" '{print$1}' | sort | uniq > coding.ID
wc coding.ID
3751
## 直接过滤 fastq 文件即可
grep -v -f coding.ID ../step3/intersection/filter3_transcript_ID > filter4_transcript_ID
$ wc -l filter4_transcript_ID
30259 filter4_transcript_ID
grep -Ff filter4_transcript_ID -w ../step3/intersection/filter3_by_noncoding.gtf > filter4_by_pfam.gtf
awk '($3=="exon"){print$0}' filter4_by_pfam.gtf > filter4_by_pfam_exon.gtf
gffread -w filter4_by_pfam_exon.fa -g /home/data/server/reference/genome/hg38/hg38.fa filter4_by_pfam_exon.gtf
$ grep -c '^>' filter4_by_pfam_exon.fa
30259
step5:到NR数据库
diamond blastx 到NR数据库,过滤 (E-value < 1e-5)
nohup diamond blastx -e 1e-5 -d ~/database/blastDB/nr/diamond/nr -q ../step4/filter4_by_pfam_exon.fa -f 6 -o ./dna_matches.txt &
$ less -S dna_matches.txt |cut -f 1 | sort -V | uniq -c |wc -l
25012
# 过滤 (E-value < 1e-5)
awk '($11<1e-2){print$1}' dna_matches.txt | sort | uniq > lncRNA.ID
grep -v -f ../step5/lncRNA.ID -w ../step4/filter4_transcript_ID > filter5_by_nr_ID
grep -Ff filter5_by_nr_ID -w ../step4/filter4_by_pfam.gtf > filter5_by_nr.gtf
step6:过滤掉低表达量的lncRNA
通过count数量或FPKM过滤掉低表达量的lncRNA
# featureCounts 统计count
nohup featureCounts -T 8 -a \
~/lncRNA_project/07.identification/step7/filter5_by_nr.gtf \
-o ./raw_count.txt -p -B -C -f -t transcript -g transcript_id \
~/lncRNA_project/04.mapping/*.bam > transcript_featureCount.log 2>&1 &
# R 语言计算FPKM,筛选:FPKM > 0 in at least one sample ,得到lncRNA_id.txt
rm(list=ls())
# make count table
raw_df <- read.table(file = "~/lncRNA_project/test/08.featurecounts/raw_count.txt",header = T,skip = 1,sep = "\t")
count_df <- raw_df[ ,c(7:ncol(raw_df))]
metadata <- raw_df[ ,1:6] # 提取基因信息count数据前的几列
rownames(count_df) <- as.character(raw_df[,1])
colnames(count_df) <- paste0("SRR10744",251:439)
# calculate FPKM
countToFpkm <- function(counts, effLen)
{
N <- colSums(counts)
exp( log(counts) + log(1e9) - log(effLen) - log(N) )
}
options(scipen = 200) # 表示在200个数字以内都不使用科学计数法
fpkm = countToFpkm(count_df, metadata$Length)
# View(fpkm)
# FPKM > 0 in at least one sample
count_df.filter <- count_df[rowSums(fpkm)>0,]
write.table(rownames(count_df.filter,file="~/lncRNA_project/test/09.all_lncRNA/filter6_by_fpkm_id", sep="\t",quote=F)
# linux 里提取最终lncRNA的gtf文件
grep -Ff filter6_by_fpkm_id -w ~/lncRNA_project/07.identification/step7/filter5_by_nr.gtf > lncRNA.gtf
# 根据exon位置信息提取基因组序列,组装成转录本序列
gffread -w lncRNA.fa -g /home/data/server/reference/genome/hg38/hg38.fa lncRNA.gtf
$ grep -c '^>' lncRNA.fa
featureCounts对组装出的lncRNA、mRNA、other_RNA定量
接下来就可以拿到组装好的gtf文件,对原来的测序文件的比对后的bam文件进行定量操作。
############## lncRNA featureaCounts ######################
nohup featureCounts -t transcript -g transcript_id \
-Q 10 --primary -s 0 -p -f -T 8 \
-a ../lncRNA.gtf \
-o ./raw_count.txt \
~/lncRNA_project/04.mapping/*.bam \
> featureCounts.log 2>&1 &
#########----------- protein_coding-------------------- #############
less -S gencode.v37.annotation.gtf | grep -w 'gene_type "protein_coding"' > protein_coding_gene.gtf
less -S gencode.v37.annotation.gtf | grep -w 'gene_type "lncRNA"' > known_lncRNA_gene.gtf
# featureCounts 定量
nohup featureCounts -t gene -g gene_id \
-Q 10 --primary -s 0 -p -f -T 8 \
-a ../protein_coding_gene.gtf \
-o ./raw_count.txt \
~/lncRNA_project/04.mapping/*.bam \
> featureCounts.log 2>&1 &
#########----------- other_RNA-------------------- #############
less -S ~/lncRNA_project/10.mRNA/gencode.v37.annotation.gtf | grep -w -v 'gene_type "protein_coding"' > other_coding_gene.gtf
# featureCounts 定量
nohup featureCounts -t gene -g gene_id \
-Q 10 --primary -s 0 -p -f -T 8 \
-a ../other_coding_gene.gtf \
-o ./raw_count.txt \
~/lncRNA_project/04.mapping/*.bam \
> featureCounts.log 2>&1 &
NONCODE v6_human数据库
blastn 到 NONCODE v6_human,区分组装出的lncRNA为:know_lncRAN、novel_lncRNA
#######----blastn ——> NONCODEv6_human ------------------#############
cat NONCODEv6_human.fa |seqkit rmdup -s -o clean.fa -d duplicated.fa -D duplicated.detail.txt
nohup makeblastdb -in clean.fa -dbtype nucl -parse_seqids -out NONCODEv6_human &
# 将blastn结果中e-value<=1e-10,min-identity=80%,min-coverage=50%的序列筛选出来当作比对上的序列
blastn -db NONCODEv6_human -evalue 1e-10 -num_threads 10 -max_target_seqs 5 -query ~/lncRNA_project/09.lncRNA/test.fa -outfmt ' 6 qseqid sseqid pident qcovs length mismatch gapopen qstart qend sstart send qseq sseq evalue bitscore' -out test.txt
lncRNA的功能推断
大量lncRNA的功能是未知的,但是它们主要是cis-regulators,所以可以根据它们临近的蛋白编码基因功能来近似推断,然后表达量的相关性也可以类推到。
根据位置关系推断
使用bedtools等工具!对DEL lncRNA 提取顺式靶mRNA,产生了lncRNA基因座/蛋白质编码基因座对的列表!
bedtools window -a lncRNA_metadata.gtf -b ~/lncRNA_project/10.protein_coding_RNA/gencode.v37.annotation.gtf -l 100000 -r 10000 > test.txt
表达量的相关性
首先自己的转录组测序数据里面就有蛋白编码基因,know_lncRAN、novel_lncRNA各自的表达量矩阵,就可以计算相关性。
也可以看数据库:
比如杂志Cancer Medicine, 2020的文章《 Genome-wide DNA methylation analysis by MethylRad and the transcriptome profiles reveal the potential cancer-related lncRNAs in colon cancer》,在进行结直肠癌相关lncRNA的功能富集分析,就是采用LncRN2Target v2.0和StarBase分析与15个lncRNA共表达的蛋白编码基因,其中lncRNA HULC和ZNF667-AS1分别鉴定到28个、9个共表达的蛋白编码基因!
LncSEA数据库
LncSEA(http://bio.liclab.net/LncSEA/index.php)着重于收录已发表的人类各种lncRNA信息,并可以对用户提交的lncRNA集合进行注释和富集分析,提供超过40000种参考lncRNA集合,包括18个类型(miRNA,drug,disease,methylation pattern,cancer specific phenotype,lncRNA binding protein,cancer hallmark,subcellular localization,survival,lncRNA-eQTL,cell marker,enhancer,super-enhancer,transcription factor,accessible chromatin and smORF,exosome和conservation)和66个亚类,包含超过了5万条lncRNA。
LncSEA主要包括Analysis,Search,Browse,ID conversion,Download 5个功能模块!