关键是看如何定义免疫特征,比如kegg数据库里面的就有很多免疫特征相关的功能基因列表,首先它区分成为了如下所示的7个大类:
1. Metabolism
2. Genetic Information Processing
3. Environmental Information Processing
4. Cellular Processes
5. Organismal Systems
6. Human Diseases
7. Drug Development
然后细分的时候就可以看到两个免疫相关的亚类:
5.1 Immune system
6.6 Immune disease
如下所示:
详见kegg数据库的官网 :https://www.genome.jp/kegg/pathway.html
这么多免疫特征通路,那么里面的基因就肯定是不少了。另外一个比较出名的是LM22基因集,是CIBERSORT软件配套的,它是2015年在Nature Methods发表的一个方法,工具在: (http://cibersort.stanford.edu).,再比如2021年7月发表在《Briefings in Bioinformatics》的文章《Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer》参考了大量文献,提出来了:The 184 immune cell signatures were collected from diverse resources through an extensive literature search on the website:
- 25 signatures were obtained from the work of Bindea et al. [26],
- 68 signatures were obtained from the work of Wolf et al. [27],
- 17 signatures were downloaded from the ImmPort database [28],
- 24 T cell signatures were downloaded from the work of Miao et al. [29]
- 22, 10 and 10 signatures were obtained from CIBERSORT [16], MCP-Counter (R package, version 1.1) [30] and ImSig (R package, version 1.0.0) [31], respectively.
More detailed information is listed in the supplementary material and Supplementary Table S1–Supplementary Table S4.
如果你感兴趣这些基因集,可以自己去阅读文献拿到Supplementary Table S4,然后针对这些通路去任意单细胞转录组数据集里面打分,肯定不会是这些免疫基因集仅仅是在免疫相关细胞亚群有活性。
通常情况下,单细胞水平很多基因是有单细胞亚群特异性的, 这些基因就被我们称作是特异性的高表达量的亚群标记基因。同理,如果有一些通路或者转录因子有某个亚群特异性,也是标志性事件啦。但是如果通路足够多,涉及到的基因也足够多,就基本上不可能全部的有排他性了。
比如上皮细胞有免疫特征
其实文章提到的是: epithelial–immune dual feature of malignant cells
来源于中山大学肿瘤防治中心的曾木圣课题组在Cell Research (2020) 发表的鼻咽癌的单细胞研究,文章标题是:《Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma》,文章的一个重要的观点是:
- The epithelial–immune dual feature of tumor cells in NPC is mainly characterized by the expression of IFN response genes.
如下所示:
其中图a是方法学描述,取NPC16这个病人的恶性的肿瘤单细胞进行NMF分析拿到里面的特征基因集,发现确实是有很多免疫相关的通路,而且是在图c得到了实验验证 :
- a ,Heatmap showing gene expression programs deciphered from a representative tumor (NPC16) using NMF.
- b ,Pearson correlation clustering of 50 intra-tumor expression programs. The dot size is proportional to the absolute value of the correlation.
- c ,The gradient of immunohistochemical staining of HLA-DRB1 in NPC tumors
基质细胞具有免疫特征
比如2023年9月28日的CELL文章: 《Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells》提到了:a dual-featured type of immune-featured DSCs (iDSCs).
这里面的 降维聚类分群涉及到的单细胞亚群非常多:
- P, placenta
- YS, yolk sac
- E, embryo
- NK cell, natural killer cell
- DC, dendritic cell
- M4, macrophage
- uEC, uterine endothelial cell
- SMC, smooth muscle cell
- Fetal EC, fetal endothelial cell
- Blood P., blood progenitor
- MSC, mesenchymal stem cell
- PSC, placental stromal cell
- VE, visceral endoderm
- DSC, decidual stromal cell
- Ery., erythrocyte
- Epi., epithelial cell
- LQ, low quality
- iDSC, immune-featured decidual stromal cell
- TGC, trophoblast giant cell
- TBPC, trophoblast progenitor cell
- SpT, spongiotrophoblast
- EPC, ectoplacental cone.
重点是第二层次降维聚类分群里面的 decidual stromal cell和免疫细胞的亚群,如下所示:
其中可以看到,免疫细胞亚群细分的时候有一个iDSC, immune-featured decidual stromal cell,而且在文章的figure4 继续强调了,如下所示:
这一群细胞(iDSC)在免疫细胞里面的时候可以看到它非常特殊因为它的DSC的特征打分过高,跟其它免疫细胞格格不入。但是呢,如果把这一群细胞(iDSC)放在所有的DSC里面它又是无法融入进去,而且它的免疫打分又过高。所以作者做了个层次聚类,蛮直观的展示了这个iDSC其实是与DSC更加接近,如果是跟免疫细胞相比。
而且从右图的打分(Violin plots showing DSC and immune cell marker gene enrichment in iDSCs)也可以看到,其实这一群细胞(iDSC)更加的具有DSC特征,跟免疫细胞相比。
第一层次降维聚类分群
各种癌症单细胞数据集我们都处理了几十个了,拿到表达量矩阵后的第一层次降维聚类分群通常是:
- immune (CD45+,PTPRC),
- epithelial/cancer (EpCAM+,EPCAM),
- stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)
参考我前面介绍过 CNS图表复现08—肿瘤单细胞数据第一次分群通用规则,这3大单细胞亚群构成了肿瘤免疫微环境的复杂。
通过前面的文章,我们看到了上皮细胞和基质细胞这样的非免疫细胞其实都可以表现出来免疫的特征。