单细胞多组学数据分析不会分析

那就不分析啊!!!

不开玩笑,只需要你设计实验收集样品花钱在公司测序了即可,数据分享到公开数据库后就可以发表在《 BMC Genomic Data》杂志啦,比如2023年8月7号见刊的《The single-cell transcriptome and chromatin accessibility datasets of peripheral blood mononuclear cells in Chinese holstein cattle》,实验设计蛮简单的:

  • 单细胞多组学技术:single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq).
  • 四个分组: four whole-blood treatments (no, 2 h, 4 h, and 8 h LPS)
  • 得到的细胞数量:7,107 (no), 9,174 (2 h), 6,741 (4 h), and 3,119 (8 h) cells

因为脂多糖(LPS)组成革兰氏阴性细菌的外膜,其暴露可导致牛的局部或全身炎症水平升高,所以本实验设计就是使用脂多糖(LPS)看LPS 作为慢性炎症的关键介质调节免疫应答。

全文没有一个图,但是数据是实打实的公开了,GSE225962,如下所示的样品:

GSM7061075 no LPS, scRNA-seq
GSM7061076 2 h LPS, scRNA-seq
GSM7061077 4 h LPS, scRNA-seq
GSM7061078 8 h LPS, scRNA-seq
GSM7061079 no LPS, scATAC-seq
GSM7061080 2 h LPS, scATAC-seq
GSM7061081 4 h LPS, scATAC-seq
GSM7061082 8 h LPS, scATAC-seq

虽然说给的文件有点奇怪:

GSM7061075_C.scRNAexpression.txt.gz 15.5 Mb
GSM7061076_T1.scRNAexpression.txt.gz 17.8 Mb
GSM7061077_T2.scRNAexpression.txt.gz 15.0 Mb
GSM7061078_T3.scRNAexpression.txt.gz 8.0 Mb
GSM7061079_C.scATACgenes-barcode.matrix.txt.gz 1.2 Mb
GSM7061080_T1.scATACgenes-barcode.matrix.txt.gz 10.5 Mb
GSM7061081_T2.scATACgenes-barcode.matrix.txt.gz 8.7 Mb
GSM7061082_T3.scATACgenes-barcode.matrix.txt.gz 5.4 Mb

单细胞转录组矩阵很容易读取并且降维聚类分群,然后看看随着脂多糖(LPS)处理时间段变化的基因,通路以及细胞亚群,但是单细胞ATAC数据作者给出来的文件应该是不够的,可能是需要去 PRJNA938112 里面下载原始数据后进行处理啦。感兴趣的可以试试看:

 

Comments are closed.