大家都知道,这十几年来最流行的差异分析软件就是R的limma包了,但是它以前只支持microarray的表达数据。
考虑到大家都熟悉了它,它又发了一个voom的方法,让它从此支持RNA-seq的count数据啦!
大家都知道芯片数据跟RNA-seq数据的本质就是value的分布不一样,所以各种针对RNA-seq的差异分析包也就是提出来一个新的normalization方法而已。
而我们limma本身就提出了一个voom的方法来对RNA-seq数据进行normalization
使用这个包也需要三个数据:
表达矩阵
分组矩阵
差异比较矩阵
用法与limma一模一样的,只是多了一个normalization而已。
一般我们会自己读取表达矩阵和分组信息,下面是一个例子:
options(warn=-1)
suppressMessages(library(DESeq2))
suppressMessages(library(limma))
suppressMessages(library(pasilla))
data(pasillaGenes)
exprSet=counts(pasillaGenes)
head(exprSet) ##表达矩阵如下
## treated1fb treated2fb treated3fb untreated1fb untreated2fb
## FBgn0000003 0 0 1 0 0
## FBgn0000008 78 46 43 47 89
## FBgn0000014 2 0 0 0 0
## FBgn0000015 1 0 1 0 1
## FBgn0000017 3187 1672 1859 2445 4615
## FBgn0000018 369 150 176 288 383
## untreated3fb untreated4fb
## FBgn0000003 0 0
## FBgn0000008 53 27
## FBgn0000014 1 0
## FBgn0000015 1 2
## FBgn0000017 2063 1711
## FBgn0000018 135 174
(group_list=pasillaGenes$condition)
## [1] treated treated treated untreated untreated untreated untreated
## Levels: treated untreated
##这是分组信息,7个样本,3个处理的,4个未处理的对照!
另外一个例子是从airway里面得到表达矩阵和分组信息
library(airway)
data(airway)
exprSet=assays(airway)$counts ## 表达矩阵
group_list=colData(airway)$dex ## 分组信息
suppressMessages(library(limma))
design <- model.matrix(~factor(group_list))
colnames(design)=levels(factor(group_list))
rownames(design)=colnames(exprSet)
design
## treated untreated
## treated1fb 1 0
## treated2fb 1 0
## treated3fb 1 0
## untreated1fb 1 1
## untreated2fb 1 1
## untreated3fb 1 1
## untreated4fb 1 1
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$`factor(group_list)`
## [1] "contr.treatment"
这里构建了一个对象 An object of class “EList”
v <- voom(exprSet,design,normalize="quantile")
## 下面的代码如果你不感兴趣不需要运行,免得误导你
## 就是看看normalization前面的数据分布差异
#png("RAWvsNORM.png")
exprSet_new=v$E
par(cex = 0.7)
n.sample=ncol(exprSet)
if(n.sample>40) par(cex = 0.5)
cols <- rainbow(n.sample*1.2)
par(mfrow=c(2,2))
boxplot(exprSet, col = cols,main="expression value",las=2)
boxplot(exprSet_new, col = cols,main="expression value",las=2)
hist(exprSet)
hist(exprSet_new)
#dev.off()
可以很明显看到normalization前后数据分布差异非常大!
这里不需要差异比较矩阵了,因为我的分组矩阵表明样本就分成两组,直接提取coef=2的数据即可
fit <- lmFit(v,design)
fit2 <- eBayes(fit)
tempOutput = topTable(fit2, coef=2, n=Inf)
DEG_voom = na.omit(tempOutput)
head(DEG_voom)
## logFC AveExpr t P.Value adj.P.Val
## FBgn0029167 2.1608689 7.880589 41.19142 5.195806e-08 0.0007518331
## FBgn0003137 -0.9560776 8.421903 -29.97211 2.920473e-07 0.0021129620
## FBgn0003748 -1.0385933 6.395990 -23.78787 1.020682e-06 0.0049230892
## FBgn0035085 2.5190255 5.221183 21.01339 1.993995e-06 0.0058809216
## FBgn0050185 -0.4886279 5.487547 -19.95422 2.635106e-06 0.0058809216
## FBgn0015568 -1.1040979 3.922438 -19.96954 2.624231e-06 0.0058809216
## B
## FBgn0029167 9.065020
## FBgn0003137 7.800063
## FBgn0003748 6.652695
## FBgn0035085 5.870585
## FBgn0050185 5.734162
## FBgn0015568 5.557560
差异分析结果就不解释啦!