25

RNA-Seq数据的内含子保留分析

前面我们的明码标价之普通转录组上游分析,受到了各大热心粉丝的吐槽,觉得太简单了我们居然还好意思收费。后面我就就加上了稍微有一点难度的《可变剪切》,不过仍然是阻挡不了粉丝无穷无尽的需求,后台有人发给我一个RNA-Seq数据的内含子保留分析需求。

我看了看粉丝发过来的文章,发表于 January 2021, 在CELL杂志的文章《Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer》,链接是:https://doi.org/10.1016/j.cell.2020.12.031

这个文章数据比较多:

SUM159 SD6 RNA-Seq #GSE163414
LM2 SD6 RNA-Seq #GSE163411
SUM159 Cytoplasmic RNA-Seq #GSE163232
SUM159 J2 dsRIPseq #GSE163188
Syngeneic model RNA-Seq #GSE163181

可以看到,主要是RNA-Seq数据啦,有两个是普通的细胞系处理前后的表达量差异情况探索,所以出图如下:

表达量差异情况探索标准图表

这个已经是超级简单了, 我们的明码标价之转录组常规测序服务(仅需799每个样品)明码标价之普通转录组上游分析 就是对这样的 RNA-Seq拿到了表达量矩阵,然后下游分析也是平淡无奇,仅收费800,代码呢,我也多次分享了,基本上看我六年前的表达芯片的公共数据库挖掘系列推文即可;

这样的分析流程基本上绝大部分粉丝已经是无需委托我们啦,所以粉丝发给我的是 RNA-Seq数据的内含子保留分析需求,步骤如下:

  • Hisat2-aligned reads were filtered for proper-paired reads (-f 2 flag in SAMtools).
  • Intron annotations were parsed from UCSC RefSeq gene annotation files and were filtered to exclude features that overlap genomic loci on the same strand.
  • Reads mapping to introns were counted using Pysam.
  • For each intron feature, we defined the following two read classes:
    • (1) ‘‘intronic’’ reads mapping at least 6 bases contiguously within the intron
    • (2) ‘‘spanning’’ reads with ends mapping to the flanking exons.
  • The intron retention (IR) score was then computed as the ratio of the RPKM-normalized ‘‘intronic’’ read density over the RPKM-normalized ‘‘spanning’’ read den- sity.
  • In order to compare commonly expressed IR events across samples, introns with < 10 spanning RPKM in any sample were excluded from all analyses.

对我们有ngs组学数据分析经验的人来说,其实并不难,无非就是安装几个软件,使用几个包。但对于没有学过编程的纯生物学研究者来说基本上不可能完成,也没有这样的网页工具。

但是呢,这个流程又确实是过于个性化,哪怕对我们来说很简单,也其实是耗费时间和精力需要研发调试的。

首先你需要有RNA-seq的fastq文件

如果是TCGA数据库,步骤如下:

  • Intron retention analysis was performed on BRCA TCGA RNA sequencing datasets (Koboldt et al., 2012).
  • TCGA fastq reads were mapped using the STAR aligner (v2.3.1) (Dobin et al., 2013) onto the hg19/GRCh37 reference genome as previously described (Hsu et al., 2015).
  • Level of intron retention (IR level) within each sample was calculated as the number of introns with IR scores > 0.01, as defined previously.
  • ‘‘High’’ and ‘‘Low’’ IR were defined as having an IR level outside one standard deviation of the mean.
  • RSEM normalized gene expression data from TCGA was obtained from the Broad GDAC Firehose.

一般来说,大家是很难下载TCGA数据库原始fastq文件,这个权限审核比较严厉,不过咱们数据挖掘呢完全没有毕业一直盯着TCGA数据库啊,自己领域的普通RNA-seq肯定也是不少。如果是认真搞科研,你一定会自行调研和阅读文献,找到合适的数据集。

数据挖掘的核心就是通过分类把基因数量搞少

部分粉丝看到这里,可能无法理解RNA-Seq数据的内含子保留分析的意义是什么?

其实就是多了一个维度的指标,来把你的样本分类,分类后就可以找差异。同样的我们可以看这个示例文章,感觉每个样品的IR指标,把病人分成IR高低两个组别,然后走普通的ssGSEA分析,生存分析。

image-20210320093952534

这一套组合拳,大家是不是很眼熟啊?

如果你也想做自己的的RNA-Seq数据的内含子保留分析,赶快联系我们吧,同样的,我们的分析仍然是明码标价,单个RNA-Seq数据的内含子保留分析收费仅需800元,因为是纯粹的基于Linux平台的各种软件脚本,所以提供你全套数据和脚本但是无法保证你能运行成功,因为你不一定有自己的服务器。

25

去broad官网下载msigdb数据库文件很麻烦

我在:借鉴escape包的一些可视化GSVA或者ssGSEA结果矩阵的方法对单细胞表达矩阵做gsea分析的两个教程里面提到过,MSigDB(Molecular Signatures Database)数据库中定义了已知的基因集合:http://software.broadinstitute.org/gsea/msigdb 需要注册才能下载。

但是这个GitHub包,ncborcherding/escape文档,在:http://www.bioconductor.org/packages/release/bioc/vignettes/escape/inst/doc/vignette.html 提供了一个封装好的MSigDB数据库信息,其实你仔细看它的文档,它的打包其实是依赖于msigdbr_7.2.1。

获取 MigDB中的全部基因集

MigDB中的全部基因集 都被这个GitHub包,ncborcherding/escape 打包起来了,MSigDB(Molecular Signatures Database)数据库中定义了已知的基因集合:http://software.broadinstitute.org/gsea/msigdb 包括H和C1-C7八个系列(Collection),每个系列分别是:

  • H: hallmark gene sets (癌症)特征基因集合,共50组,最常用;
  • C1: positional gene sets 位置基因集合,根据染色体位置,共326个,用的很少;
  • C2: curated gene sets:(专家)校验基因集合,基于通路、文献等:
  • C3: motif gene sets:模式基因集合,主要包括microRNA和转录因子靶基因两部分
  • C4: computational gene sets:计算基因集合,通过挖掘癌症相关芯片数据定义的基因集合;
  • C5: GO gene sets:Gene Ontology 基因本体论,包括BP(生物学过程biological process,细胞原件cellular component和分子功能molecular function三部分)
  • C6: oncogenic signatures:癌症特征基因集合,大部分来源于NCBI GEO 发表芯片数据
  • C7: immunologic signatures: 免疫相关基因集合。
GS <- getGeneSets(library = "H")
GS

MigDB中的全部基因集 被 构建成为: a list of GSEABase GeneSet objects ,获取 hallmark gene sets (癌症)特征基因集合。

源头是msigdbr 包

安装方法非常简单:

install.packages("msigdbr")

但是这个msigdbr并没有我想象中的那么大:

Installing package into ‘C:/Users/win10/Documents/R/win-library/4.0’
(as ‘lib’ is unspecified)
试开URL’https://cran.rstudio.com/bin/windows/contrib/4.0/msigdbr_7.2.1.zip'
Content type 'application/zip' length 6737651 bytes (6.4 MB)
downloaded 6.4 MB

package ‘msigdbr’ successfully unpacked and MD5 sums checked

同样的,学习R包,看看文档即可,在: https://cran.r-project.org/web/packages/msigdbr/vignettes/msigdbr-intro.html

Documentation for package ‘msigdbr’ version 7.2.1
DESCRIPTION file.
User guides, package vignettes and other documentation.
Help Pages
msigdbr Retrieve the gene sets data frame
msigdbr_collections List the collections available in the msigdbr package
msigdbr_show_species List the species available in the msigdbr package
msigdbr_species List the species available in the msigdbr package

非常简单的文档

这些代码使用就明白了,确实没啥好继续讲解的:

library(msigdbr)
# All gene sets in the database can be retrieved without specifying a collection/category. 
all_gene_sets = msigdbr(species = "Mus musculus")
head(all_gene_sets)
msigdbr_species()
all_gene_sets = msigdbr(species = "Homo sapiens")

无非就是封装和对象,前面的 escape 包提供了getGeneSets函数,我们的这个msigdbr提供了 msigdbr函数。

生信基石之R语言

B站的10个小时教学视频务必看完,参考 GitHub 仓库存放的相关学习路线指导资料:https://github.com/jmzeng1314/R_bilibili ,可以参考一些优秀笔记,比如https://mubu.com/doc/2KUiSCfVsg

文末友情推荐

25

单细胞转录组下游分析是否有必要删除线粒体和核糖体基因

如果你看了我的单细胞转录组数据分析的 基础10讲: